Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard

نویسندگان

  • Weimin Wang
  • Ken Sakurada
  • Nobuo Kawaguchi
چکیده

This paper presents a novel method for fully automatic and convenient extrinsic calibration of a 3D LiDAR and a panoramic camera with a normally printed chessboard. The proposed method is based on the 3D corner estimation of the chessboard from the sparse point cloud generated by one frame scan of the LiDAR. To estimate the corners, we formulate a full-scale model of the chessboard and fit it to the segmented 3D points of the chessboard. The model is fitted by optimizing the cost function under constraints of correlation between the reflectance intensity of laser and the color of the chessboard’s patterns. Powell’s method is introduced for resolving the discontinuity problem in optimization. The corners of the fitted model are considered as the 3D corners of the chessboard. Once the corners of the chessboard in the 3D point cloud are estimated, the extrinsic calibration of the two sensors is converted to a 3D-2D matching problem. The corresponding 3D-2D points are used to calculate the absolute pose of the two sensors with Unified Perspective-n-Point (UPnP). Further, the calculated parameters are regarded as initial values and are refined using the Levenberg-Marquardt method. The performance of the proposed corner detection method from the 3D point cloud is evaluated using simulations. The results of experiments, conducted on a Velodyne HDL-32e LiDAR and a Ladybug3 camera under the proposed re-projection error metric, qualitatively and quantitatively demonstrate the accuracy and stability of the final extrinsic calibration parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Extrinsic Calibration of Vision and Lidar by Maximizing Mutual Information

This paper reports on an algorithm for automatic, targetless, extrinsic calibration of a lidar and optical camera system based upon the maximization of mutual information between the sensor measured surface intensities. The proposed method is completely data driven and does not require any fiducial calibration targets—making in situ calibration easy. We calculate the Cramér-Rao lower bound (CRL...

متن کامل

Calibration of RGB Camera With Velodyne LiDAR

Calibration of the LiDAR sensor with RGB camera finds its usage in many application fields from enhancing image classification to the environment perception and mapping. This paper presents a pipeline for mutual pose and orientation estimation of the mentioned sensors using a coarse to fine approach. Previously published methods use multiple views of a known chessboard marker for computing the ...

متن کامل

Automatic Chessboard Detection for Intrinsic and Extrinsic Camera Parameter Calibration

There are increasing applications that require precise calibration of cameras to perform accurate measurements on objects located within images, and an automatic algorithm would reduce this time consuming calibration procedure. The method proposed in this article uses a pattern similar to that of a chess board, which is found automatically in each image, when no information regarding the number...

متن کامل

LiDAR-Camera Calibration using 3D-3D Point correspondences

With the advent of autonomous vehicles, LiDAR and cameras have become an indispensable combination of sensors. They both provide rich and complementary data which can be used by various algorithms and machine learning to sense and make vital inferences about the surroundings. We propose a novel pipeline and experimental setup to find accurate rigid-body transformation for extrinsically calibrat...

متن کامل

Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information

This paper reports on a mutual information (MI) based algorithm for automatic extrinsic calibration of a 3D laser scanner and optical camera system. By using MI as the registration criterion, our method is able to work in situ without the need for any specific calibration targets, which makes it practical for in-field calibration. The calibration parameters are estimated by maximizing the mutua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017